38-Title: Antibiotic resistance studies in Staphylococcus aureus isolates from goat milk

38-Title: Antibiotic resistance studies in Staphylococcus aureus isolates from goat milk

Authors: QA Juya, P Kaur, M Parmar, NS Sharma and AK Arora

Source: Ruminant Science (2022)-11(2):445-454.

How to cite this manuscript: Juya QA, Kaur P, Parmar M, Sharma NS and Arora AK (2022). Antibiotic resistance studies in Staphylococcus aureus isolates from goat milk. Ruminant Science 11(2):445-454.

Abstract

A total of 150 samples (milk=125 and farm premise samples=25) were collected from mastitic (n=100) as well as apparently healthy (n=25) goats. On isolation, a total of 21 Staphylococcus aureus isolates were obtained, which were confirmed by various biochemical and molecular tests. All 21 isolates exhibited positive results for genus and species-specific PCR. For studying the antibiotic resistance pattern, the isolates were tested for sensitivity against 16 different antibiotics using the disc diffusion method. Sensitivity pattern indicated that the majority of the isolates were resistant to cefoxitin, methicillin (76.1%) and penicillin G (61.9%) and the highest resistance was observed against beta-lactam group. Molecular detection for various antibiotic resistance genes viz. aacA-aph D, blaZ, tetK, tetM, tetL, tetA, ermA, ermB, ermC, vanA, vanB and mec A revealed that tetK (38.09%) and tetM (33.33%) were the predominant resistance genes detected among the isolates, followed by ermC (28.57%), blaZ and ermB (14.29%).

References

Abed AH, Menshawy A, Zeinhom M, Hossain D, Khalifa E, Wareth G and Awad MF (2021). Subclinical mastitis in selected bovine dairy herds in north upper Egypt: Assessment of prevalence, causative bacterial pathogens, antimicrobial resistance and virulence-associated genes. Microorganism 9(6):1175.

Andrade NC, Laranjo M, Costa MM and Queiroga MC (2021). Virulence factors in Staphylococcus associated with small ruminant mastitis: Biofilm production and antimicrobial resistance genes. Antibiotics 10(6):633.

Azzi O, Lai F, Tennah S, Menoueri MN, Achek R, Azara E and Tola S (2020). Spa-typing and antimicrobial susceptibility of Staphylococcus aureus isolated from clinical sheep mastitis in Médéa province, Algeria. Small Ruminant Research 192:106168.

Bengtson B, Unnerstad HE, Ekman T, Artursson K, Nilsson-Öst M and Waller KP (2009). Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Veterinary Microbiology 136(1-2):142-149.

Bharathy S, Gunaseelan L, Porteen K and Bojiraj M (2015). Prevalence of Staphylococcus aureus in raw milk: Can it be a potential public health threat. International Journal of Advanced Research 3(2):801-806.

Brakstad OG, Aasbakk K and Maeland JA (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology 30(7):1654-1660.

Cantekin Z, Ergun Y, Solmaz H and Tek E (2019). Detection of slime genes and antiseptic/antibiotic resistance genes in Staphylococcal isolates from Damascus goats with subclinical mastitis. Revuede Médecine Véterinaire 170(7-9):174-178.

Chu C, Yu C, Lee Y and Su Y (2012). Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan. BMC Veterinary Research 8(39):1-10.

Duran N, Ozer B, Duran G, Onlen Y and Demir C. 2012. Antibiotic resistance genes and susceptibility patterns in Staphylococci. Indian Journal of Medical Research 135(3):389-96.

Elsayed S, Hamilton N, Boyd D and Mulvey M (2001). Improved primer design for multiplex PCR analysis of vancomycin-resistant Staphylococcus spp. Journal of Clinical Microbiology 39(6):2367-2368.

França CA, Peixoto RM, Cavalcante MB, Melo NF, Oliveira CJB, Veschi JLA, Mota RA and Costa MM (2012). Antimicrobial resistance of Staphylococcus spp. from small ruminant mastitis in Brazil. Pesquisa Veterinária Brasileira 32(8):747-753.

Friese A, Schulz J, Hoehle L, Fetsch A, Tenhagen BA, Hartung J and Roesler U (2012). Occurrence of MRSA in air and housing environment of pig barns. Veterinary Microbiology 158(1-2):129-135.

Harrison EM, Weinert LA, Holden MT, WelchJJ, Wilson K, Morgan FJ and Holmes MA (2014). A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. Mbio 5(3):e00985-13.

Huys G, D’Haene K, Van Eldere J, von Holy A and Swings J (2005). Molecular diversity and characterization of tetracycline-resistant Staphylococcus aureus isolates from a poultry processing plant. Applied Environmental Microbiology 71:574-579.

Ida T, Okamoto R, Shimauchi C, Okubo T, Kuga A and Inoue M (2001). Identification of aminoglycoside-modifying enzymes by susceptibility testing: epidemiology of methicillin-resistant Staphylococcus aureus in Japan. Journal of Clinical Microbiology 39(9):3115-3121.

Klimesova M, Manga I, Nejeschlebova L, Horacek J, Ponizil A and Vondruskova E (2017). Occurrence of Staphylococcus aureus in cattle, sheep, goat, and pig rearing in the Czech Republic. Acta Veterinaria Brno 86(1):3-10.

Lim KT, Hanifah YA, Yusof MYM, Ito T and Thong KL (2013). Comparison of methicillin-resistant Staphylococcus aureus strains isolated in 2003 and 2008 with an emergence of multidrug-resistant ST22: SCCmec IV clone in a tertiary hospital, Malaysia. Journal of Microbiology, Immunology and Infection 46(3):224-233.

Lodder G, Werckenthin C, Schwarz S and Dyke K (1997). Molecular analysis of naturally occurring erm C-encoding plasmids in staphylococci isolated from animals with and without previous contact with macrolide/lincosamide antibiotics. FEMS Immunology and Medical Microbiology 18(1):7-15.

Martineau F, Picard J F, Lansac N, Menard C, Roy H P, Ouellette M and Bergeron G M (2002) Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staph. epidermidis. Antimicrobial Agents and Chemotherapy 44(2):231-238.

Martini CL, Lange CC, Brito MA, Ribeiro JB, Mendonça LC and Vaz EK (2017). Characterization of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil. Journal of Dairy Research 84(2):202-205.

Omwenga I, Aboge GO, Mitema ES, Obiero G, Ngaywa C, Ngwili N, Wamwere G, Wainaina M and Bett B (2021). Antimicrobial usage and detection of multidrug-resistant S. aureus, including methicillin-resistant strains in raw milk of livestock from northern Kenya. Microbial Drug Resistance 27(6):843-854.

Ozturk D, Türütoðlu H, Pehlivanoðlu F and Yapýcýer ÖÞ (2019). Identification of bacteria isolated from dairy goats with subclinical mastitis and investigation of methicillin and vancomycin resistant Staphylococcus aureus strains. Ankara Üniversitesi Veteriner FakultesiDergisi 66(2):191-196.

Perez V, Costa G, Guimarães AS, Heinemann MB, Lage AP and Dorneles E (2020). Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. Journal of Global Antimicrobial Resistance 22:792-802.

Pyatov V, Vrtkova I and Knoll A (2017). Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic. Acta Veterinaria Brno 86(2):167-174.

Radwan IA, Mahdy WK, Hegazy E and Salam HS (2017). Vancomycin resistance among methicillin-resistant S. aureus isolates from animal milk. Journal of Veterinary Medical Research 24(2):303-310.

Roberson JR, Fox LK, Hancock DD, Gay JM and Besser TE (1998). Sources of intramammary infections from Staphylococcus aureus in dairy heifers at first parturition. Journal of Dairy Science 81(3):687-693.

Romanò A, Gazzola A, Bianchini V, Cortimiglia C, Maisano AM, Cremonesi P and Luini M (2020). Staphylococcus aureus from goats are genetically heterogeneous and distinct to bovine ones. Frontiers in Veterinary Science 7:628.

Saha B, Singh AK, Ghosh A and Bal M (2008). Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). Journal of Medical Microbiology 57(1):72-79.

Shome BR, Natesan K, Mitra SD, Venugopal N, Bhuvana MANÝ, Ganaie F and Rahman H (2018). Development of simplex-PCR assays for accurate identification of nine staphylococcal species at genus and species levels. Journal of Microbiology and Infectious Diseases 8(3):120-127.

Sindhu N, Sharma A and Jain VK (2010). Diagnosis of staphylococcal mastitis directly from milk of Murrah buffaloes and cross-bred cows by 16S-23S ribosomal RNA intergenic spacer PCR analysis. Israel Journal of Veterinary Medicine 65(1):23-26.

Sree PD and Ayodha S (2016). Bacteriological and antibiogram studies of milk samples of clinical mastitis in goats. IOSR Journal of Agriculture and Veterinary Science 9(6):33-35.

Strommenger B, Kettlitz C, Werner G and Witte W (2003). Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. Journal of Clinical Microbiology 41(9):4089-4094.

Sutclife J, Grebe T, Tait-Kamradt A and Wondrack L (1996). Detection of erythromycin-resistant determinants by PCR. Antimicrobial Agents and Chemotherapy 40(11):2562-2566.

Wendlandt S, Febler AT, Monecke S, Ehricht R, Schwarz S and Kadlec K (2013). The diversity of antimicrobial resistance genes among staphylococci of animal origin. International Journal of Medical Microbiology 303(6-7):338-349.

Yang F, Wang Q, Wang X, Wang L, Xiao M, Li X and Li H (2015). Prevalence of blaZ gene and other virulence genes in penicillin-resistant Staphylococcus aureus isolated from bovine mastitic cases in Gansu, China. Turkish Journal of Veterinary and Animal Science 39(5):634-636.

Zhao Y, Liu H, Zhao X, Gao Y, Zhang M and Chen D (2014). Prevalence and pathogens of subclinical mastitis in dairy goats in China. Tropical Animal Health and Production 47(2):429-435.